
Selecting Open Source Software Projects
to Teach Software Engineering

Thérèse Smith, Robert McCartney, and Swapna S. Gokhale Lisa C. Kaczmarczyk
Department of Computer Science and Engineering Consultant

University of Connecticut, Storrs, CT 06269 San Diego, CA 92130
[tms08012, robert, ssg]@engr.uconn.edu lisak@acm.org

ABSTRACT
Aspiring software engineers must be able to comprehend
and evolve legacy code, which is challenging because the
code may be poorly documented, ill structured, and lacking
in human support. These challenges of understanding and
evolving existing code can be illustrated in academic settings
by leveraging the rich and varied volume of Open Source
Software (OSS) code. To teach SE with OSS, however, it
is necessary to select uniform projects of appropriate size
and complexity. This paper reports on our search for suit-
able OSS projects to teach an introductory SE course with
a focus on maintenance and evolution. The search turned
out to be quite labor intensive and cumbersome, contrary
to our expectations that it would be quick and simple. The
chosen projects successfully demonstrated the maintenance
challenges, highlighting the promise of using OSS. The bur-
den of selecting projects, however, may impede widespread
integration of OSS into SE and other computing courses.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Mainte-
nance, and Enhancement; K.3.2 [Computers and Edu-
cation]: Computers and Information Science Education

General Terms
Documentation, Design, Experimentation

Keywords
Software Engineering, Maintenance, Program Comprehen-
sion, Open Source

1. INTRODUCTION AND MOTIVATION
The need for skilled software engineers has compelled

nearly every computing curriculum to include Software En-
gineering (SE) as a mandatory course. The objective of
this SE course is to train students in principles and prac-
tices of modern software engineering and to prepare them
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGCSE’14, March 3–8, 2014, Atlanta, GA, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2605-6/14/03 ...$15.00.
http://dx.doi.org/10.1145/2538862.2538932.

for careers in the software industry. An overwhelming num-
ber of software engineering activities involve understanding
and evolving existing, legacy code. Comprehension of such
legacy code may be difficult because it could: (i) have been
subject to many fixes and enhancements, (ii) be poorly writ-
ten, (iii) have little to no documentation, and/or (iv) lack
support. Computing students must therefore be trained to
“reverse engineer” design decisions and their rationale from
such code, often under serious time and resource constraints.

A major difficulty in highlighting comprehension and evo-
lution challenges to SE students is to find pre-existing code
that has characteristics similar to that of industrial code
but is commensurate with students’ preparation and back-
ground. The rich and diverse Open Source Software (OSS)
projects can readily supply such pre-existing code [6]. It
can also provide a context to practice design, development,
and testing skills. OSS-based SE projects will force students
to comprehend sparsely documented and/or poorly written
code. OSS can thus be leveraged to emulate industrial chal-
lenges in academic environments.

Our objective was to integrate OSS projects into our
sophomore-level SE course. Because OSS projects exhibited
large variability in terms of size, complexity, and quality,
our greatest obstacle was to select suitable projects. The
projects could not be too large or complex because students
would not be able to understand them well enough to extend
them. These projects also could not be too small or simple
because the students would not find it necessary to use SE
principles, rather they could fall back to the disorganized
generate-and-test approaches that were sufficient in the in-
troductory courses. Given these constraints, we sought to
manually identify, evaluate, and prepare projects for inte-
gration. This paper describes how our selection effort was
fraught with unexpected challenges and was labor intensive.
The selected projects, however, provided opportunities for
deep involvement with the code, meaningfully highlighting
the maintenance difficulties. Our experience thus suggests
that in order to use OSS for SE instruction, the burden of
selecting and preparing projects must be alleviated.

This paper is organized as follows: Section 2 discusses the
promise of OSS. Section 3 compares OSS repositories . Sec-
tion 4 presents project selection process. Section 5 describes
how the chosen projects met course objectives. Section 6
surveys related work. Section 7 concludes the paper.

2. OSS: PROMISE AND PERILS
The OSS revolution is having a lasting impact on the way

software is developed, disseminated, and adapted. This is

397

evident from the myriad of OSS projects already available,
and the pace at which software engineers contribute to the
development of these projects. This revolution has thus cre-
ated easily accessible, exponentially growing [9] volume of
code, some of which can be used as example code in SE ed-
ucation. Popular OSS repositories such as Sourceforge [29],
Freecode [12], CodePlex [7], and W3C [33] host more than
200,000 projects. We use these repositories simply as code
sources; students do not contribute back to them.

OSS projects span a variety of domains such as tools for
software development, financial analysis, security and net-
working, data manipulation and visualization, audio and
video engineering and text editing, operating and database
systems, and games and entertainment [29]. These projects
target common platforms including Windows and Linux and
are written in languages such as C, C++, Perl, Fortran,
Python, Java, Tcl, Objective-C, Ada, and Php. Although
the OSS development process appears ad hoc, many projects
are completed successfully with rich functionality and high
reliability because their latent social structure allows the
projects to grow in an organized manner [2, 31]. Moreover,
because most engineers participate in OSS to build reputa-
tion, or for self-development [23] and altruistic reasons, they
may be inherently committed to SE principles, which may
lead to projects that are carefully designed, engineered, and
maintained. OSS projects may thus exhibit varied char-
acteristics and quality similar to industrial systems, even
though their requirements processes may differ from that of
traditional software systems [26]. These projects can thus
provide a valuable resource for teaching SE.

The rich diversity of OSS systems, however, presents one
of the greatest hurdles in teaching with these projects. All
chosen projects must be of comparable difficulty and com-
plexity. Independent selection by students from OSS repos-
itories is not only unlikely to produce that result but it may
also be inordinately time consuming. Therefore, teaching
SE with OSS will require identification and evaluation of a
collection of suitable projects. We seek a collection because
it improves the chance that students will find an interesting
project and also minimizes cross-group collaboration. Such
collaboration is undesirable because it diminishes each stu-
dent’s contribution to critical analysis of the documentation
and reflection on the architecture and data representation
that is necessary for comprehensive understanding [27].

3. ANALYSIS OF OSS REPOSITORIES
Each OSS repository hosted a large number of projects

and showed varying search and selection capabilities. There-
fore, we explored many repositories, subject to a preliminary
criteria, to identify those with potential for efficiently pro-
viding appropriate projects.

3.1 Preliminary Criteria
Our objective was to integrate OSS into an early, introduc-

tory SE course for sophomore and juniors. Our students had
limited experience in Java programming and could write,
test, and debug only small volumes of code after having
taken a data structures course. They could also use Eclipse,
create UML class diagrams, and produce documentation.
Our SE course was “maintenance-centric” and the labora-
tory exercises performed on OSS projects challenged stu-
dents to practice code comprehension, use appropriate tools
(source code control systems, reverse engineering), and im-

plement an enhancement of their choice. The students were
expected to work methodically and document their activi-
ties systematically, especially, those undertaken to complete
their enhancement. Given the background and skills of our
students and the objectives of the course, we devised the
following preliminary criteria:

• Programming Language (PL): The projects must be
programmed completely in Java because it was the
only language known by all of our students.

• Code Size (CS): Project size should be approximately
10,000 lines; smaller projects may not adequately em-
ulate maintenance difficulties and larger ones may be
beyond our students’ capabilities [20].

• Team Development (TD): Projects with a team were
desirable, for possibly quick resolution of issues.

• Buildability (BD): Projects should build within one to
two days to preserve focus on understanding and en-
hancing the code.

3.2 Exploration of Repositories
We searched several OSS repositories subject to PL, CS,

TD, and BD criteria to narrow a large pool of candidate
projects. We believed that these preliminary criteria would
be easy to assess; obviously it should be possible to deter-
mine code size, programming language and whether a team
was involved with a project with minimal effort. Also, we
expected most OSS projects to be close to building. Con-
trary to these expectations, however, we found that mostly
large projects, which were beyond the code size criterion
built easily and many smaller projects with acceptable code
sizes failed to build. Therefore, we deferred examining for
buildability and describe our findings in applying only the
CS, PL and TD criteria to the OSS repositories.

• Apache: Apache hosted many projects with excellent
quality, sizeable communities, noteworthy documenta-
tion, and passing the BD test. However, the smallest
projects wildly exceeded the size.

• CodePlex: Projects at CodePlex could be rapidly fil-
tered using “alpha or better,” “beta or better,” and
“stable” only. There were over 9000 projects classified
as “beta or better”. Though Javascript is a tag, Java
is not, and entering Java as a search term returned
389 projects, and restoring “beta or better” dropped
the number to 195. Many of these 195 projects were
Javascript. Even some in C# were returned, because
these included Java in the tags or descriptive text.
Thus, our initial impression was that the site was help-
ful and quick, but not many projects were suitable.

• Code.google: A relatively large percentage of projects
at this repository were executables rather than source.

• Freecode: Freecode offered a very nice search experi-
ence, with a number of keywords. It, however, referred
to many projects at various other repositories. The
first dozen or so projects examined appeared to be ex-
ecutables unaccompanied by code. We inferred that
Freecode was an improved search front end but not a
repository and had many executable-only hits.

398

• GNU: GNU had many projects, including a subset for
Windows, but those checked were not in Java.

• Sourceforge: Sourceforge had many projects, and use-
ful search keywords beyond the general search area.
Searching for Java projects, however, still yielded a
small number of projects in other languages. It also
permitted searches over several categories of activ-
ity and achievement such as “alpha”, “beta”, “stable”,
“mature”, and “inactive”. This was used to eliminate
projects whose stages of development were too early or
too late. Beyond these terms, users could create addi-
tional search qualifiers, which appeared to be matched
against project text descriptions. The searches were
not as selective and the results had to be pared man-
ually. However, the popularity of the site combined
with our experience indicated usable material.

• Tigris: This repository hosted several projects, but
these exceeded the code size.

• GitHub: This repository offered search terms including
language and most recent push date, which provided
approximately 18,000 Java projects.

• W3C: W3C featured excellent quality software, some
in Java, but the projects appeared too big.

Sourceforge appeared to be the most productive based
on CS and PL, and hence, we explored it further against
the TD criterion. However, limiting the code size to 10,000
lines while simultaneously requiring a team of developers
virtually resulted in no projects. Many appealing projects
with several developers but over 17,000 lines of code could
be found easily. Several projects with fewer than 5,000 lines
of code were by single individuals. It seemed that there were
not many projects in the mature, stable or alpha, or even
beta state with more than one developer that also had fewer
than 12,000 lines of code. Thus, we revised the TD criterion
because it conflicted with CS, and elected to accept single
developer projects with approximately 10,000 lines, resulting
in about 1000 projects for detailed evaluation.

3.3 Comparison of Capabilities
During our exploration, we found that the search and

download capabilities of OSS repositories differed widely.
All repositories could narrow projects with pre-defined key
words and allowed users to create additional search terms.
Matches to pre-defined key words, however, differed from
matches to user-created search terms because projects may
be manually classified according to pre-defined key words,
while user-created key words may be matched against the
text associated with the project. These conjectures arose
because the search results were different with pre-defined
key words vs. using them as user-defined search terms.

The repositories also differed in their specific pre-defined
key words. The classification scheme“beta or better” seen at
CodePlex was more closely aligned with users’ thinking than
the scheme at Sourceforge which has “beta” and “mature”.
Code.google and Freecode also supported pre-defined search
criteria, but the labels at former were dramatically smaller
than the number of search terms at the latter. GitHub pro-
vided a desirable ability to use recency as a search term,
compared to obtaining that information after a search. The

naming scheme may suggest content, source or “only” exe-
cutables: src could be seen in the name.

The careful cataloging at Freecode greatly aided the
search process, however, some projects found through
Freecode were hosted at Sourceforge. The relative frequency
of finding source code, as opposed to binaries, was higher via
Sourceforge vs. Freecode. Thus, it appeared that Freecode
placed relatively more emphasis upon searching and less em-
phasis on hosting than Sourceforge.

While each site appeared to be addressing a specific au-
dience of software users and developers, the degree of co-
ordination among the community of contributors could be
different. Domains at Sourceforge could be imagined to have
grown according to the contributions. Apache’s emphasis on
community process, and a seeming interrelatedness of the
categories (e.g., Web server, mail, XSLT formatted output,
XML parsing, etc.), suggested more coordination.

The repositories also exhibited varying support for search-
ing based on project size. GitHub allowed searching based
on repository size, which was only somewhat related to code
size. At Code.google, the number of lines of code was re-
ported only for some projects. Other repositories did not
allow a search based on project size. Most of the sites of-
fered reasonable support for downloading project artifacts.
At Code.google, we found many projects made available as
multiple individual files, unsuitable for download. Projects,
if they were packaged to be downloaded as archives, could be
imported directly into a prepared Java project in Eclipse as
archive files. GitHub downloaded with a Git clone. Source-
forge downloaded with the originator’s choice of CVS, SVN,
Git and Mercurial.

Based on these lessons, we contemplated the characteris-
tics of an ideal repository for project selection. Such a repos-
itory would host a large collection of projects, provide apt
and usable search terms, and distinguish from unsuitable
projects. For example, being able to separate “executable
only” projects from those with source code could eliminate a
large subset of the projects in one search query. The repos-
itory would also allow projects to be scoped and searched
based on their size. Finally, it would facilitate downloading
project artifacts. Being able to exercise one action, such as
a repository clone, or a single download, would be preferred
over manually downloading individual project files.

4. PROJECT SELECTION
A whole summer of 12 hour days was spent examining can-

didate software projects. Three computers were kept run-
ning, continuously downloading Java software that looked
interesting based upon manual inspection of subject matter
and age. Of the 1000 projects downloaded and (manually)
examined, 200 passed the initial criteria. These 200 were
further investigated. Several additional criteria were applied
to ensure that the chosen projects were appropriate to meet
the objectives of our maintenance-centric course.

• Code Size (CS): Initially, approximate sizes were esti-
mated to lie between 5,000 and 10,000 lines. Accurate
sizes were counted after eliminating duplicate files.

• Programming Language (PL): To be completely cer-
tain, PL was applied as a search qualifier rather than
typing it in the search entry field because this could
return projects with Java in their description, but were

399

not necessarily programmed in Java. However, when
Java was specified as a qualifier, the search produced
projects written exclusively in Java.

• Application Domain (AD): We sought projects that
were “cool” and appealing to the students. Our prior
interactions with students suggested that projects with
graphics such as 3D visualization, audio/video tools,
and those with GUIs would satisfy this criteria. While
the projects at Sourceforge were searchable according
to domains, establishing correlation between domain
and size was cumbersome. Although projects in most
domains were too big, some in Home and Education,
Audio and Video, and Games were of suitable size.

• Modular Design (MD): Projects should be modular
and loosely coupled to effectively demonstrate best
practices that aid maintenance. Modularity was as-
sessed using metrics that characterized code organiza-
tion including the number of files, number of directo-
ries, and the depth of the directory structure. Direc-
tory naming and structure such as the Model, View,
Controller [13] was also used to provide clues about a
project’s modularity and organization.

• Recent Activity (RA): Projects with recent updates
and commits were sought for ease of seeking help. We
evaluated activity based on the date of the most recent
commit, and the number of committers, if available.

• Documentation Quality (DQ): Projects should not be
exceptionally well documented, because this would
only trivialize the comprehension and evolution chal-
lenges. Moreover, all the projects should be docu-
mented more or less uniformly, so that the students
would be challenged similarly. To assess quality, we
considered multiple aspects such as readability, accu-
racy, degree of detail, availability, helpfulness, recency
and correctness. If the documentation was not in En-
glish, we considered that in assessing its helpfulness,
although strictly this aspect is different from quality.
Despite our quest for uniformity, documentation dif-
fered widely and came in many forms including web
sites, user guides, reuse from other sources, pictures
and diagrams, and comments in the code.

• Buildability (BD): Initially, we immediately rejected
projects that did not build. Upon realizing that only
big projects built easily, we became lenient and in-
vested reasonable time to build a project. Thus, we
discarded a candidate project with ordinary appeal if
it could not be compiled with an hour-long effort. A
project, with highly desirable appeal was eliminated
only if several hours of debugging failed to build it.
Many projects did not build because of missing jar
files, which could be obtained using jarfinder. Only a
handful required elaborate and ad hoc search to ob-
tain or substitute the missing files. We maintained a
collection of the missing files that we found for future
use. Thus, effort incurred in building projects could
be categorized as “minimal”, “moderate” or “extreme”.

In summary, our process of evaluating Sourceforge
projects revealed that: (i) It is difficult to find team projects
with approximately 10,000 lines of code; (ii) Small, single

developer projects do not build easily; (iii) Quality of docu-
mentation can vary widely; and (iv) Code organization may
offer misleading clues into its modularity.

5. PROJECT SUITABILITY
Table 1 summarizes the characteristics of the 16 selected

projects with respect to each criteria. Java projects spanned
the domains of Games, Art, Skills, Indexing, Searching and
Client/Server applications [25]. The projects were moder-
ately modular and recent; being no more than two years old.
Only a few projects had two developers. Sizes ranged from
5,500 to 10,500 lines, and most were lightly documented.
After we spent hours, students could compile the projects
quickly based on our guidance and readily available jar files.

Next, we discuss how these projects fared in meeting our
maintenance-centric objectives. Table 2, which summarizes
the range of enhancements, shows that most students en-
gaged with both the architecture (A) and the data represen-
tation (DR) of their projects. Students were initially frus-
trated with the difficulties in understanding code that was
not written by them, without much support. However, this
initial frustration was later replaced with a healthy sense of
pride, accomplishment, and self-achievement, as they nav-
igated and completed their chosen extensions. End-of-the
semester surveys [19, 14] indicated that the students appreci-
ated that software maintenance and evolution was: (i) chal-
lenging, resource intensive, and time consuming; (ii) could
be significantly aided by documentation and comments; and
(iii) assisted by a good architecture but hindered by a brit-
tle one. The chosen OSS projects thus successfully achieved
our objectives of illustrating comprehension and evolution
challenges and also provided a context to learn and practice
the skills to meet these challenges.

Table 2: Project Enhancements and Engagement

Project Enhancement Engmnt
1. carDriving GUI, Tutorial A, DR
2. Coppit GUI, Rules, Bug Fixes A, DR
3. Domination GUI A, DR
4. Solitaire GUI, Rules A, DR
5. JigsawPuzzle GUI A, DR
6. JugglePat GUI, Coordinate music A, DR
7. Melosion Entry of a new song DR
8. Monopoli GUI A
9. Simulum GUI, Coordinate music A, DR
10. MusicCoach Play, pause, rewind, GUI A, DR
11. NocNorade Rules A, DR
12. Picofarm GUI A, DR
13. SlimeWarrior GUI A, DR
14. vgt-battleships GUI A, DR
15. Sudoku Rules DR
16. Puggle Add doc types A, DR
A = Architecture, DR = Data Representation

6. RELATED WORK
OSS projects have been used to teach SE activities such as

design, testing, quality assurance, maintenance, and usabil-
ity. They have also been used to teach basic and advanced
programming and software development concepts. These
works have adopted varied approaches for project selection;
allowing students to choose with or without guidance [30,

400

Table 1: Characteristics of Selected OSS Projects
Project Name Project characteristics Project Name Project Characteristics
1. carDriving AD: Game, graphics, sound, physics 9. Simulum AD: lovely, 3D effect

MD: 25, 1, 1 MD: 42, 17, 2
AL: 2011/06/16, 2 committers AL: 2010/01/25
DQ: Web site, some documentation DQ: Web site
CS: 8931 BD: Minimal CS: 7586 BD: Minimal

2. Coppit AD: Board game with computer player 10. MusicSkillsCoach AD: Sound, useful for musicians
MD: 17 files, 3 directories MD: 33, 9, 4
AL: 2010/10/05 AL: 2011/01/14
DQ: Wikipedia page DQ: good naming
CS: 6461 BD: Minimal CS: 5259 BD: Moderate

3. Domination AD: Board game 11. NocNorade AD: Partial game
MD: 49, 6, 1 MD: 26, 8, 3
AL: 2010/10/08, 6 committers AL: 2007/01/08
DQ: Web site, class explanations DQ: Web site
CS: 8006 BD: Moderate CS: 5586 BD: Moderate

4. FourRowSolitaire AD: Card game 12. Picofarm AD: Client/Server, Soap, RMI
MD: 16, 1, 1 MD: 33, 4, 1
AL: 2011/06/28 AL: 2007/03/28
DQ: Comments at top and within files DQ: Website, extended comments
CS: 5633 BD: Moderate CS: 7049 BD: Moderate

5. JigsawPuzzle AD: Entertainment 13. SlimeWarrior AD: Animation
MD: 49, 11, 1 MD: 20, 6, 3
AL: 2010/07/10 AL: 2011/02/13
DQ: comments every few lines of code DQ: Included html pages, YouTube
CS: 7774 BD: Extreme CS: 10401 BD: Moderate

6. JugglePat AD: Patterns, animation 14. vgt-battleships GUI, computer opponent
MD: 20, 3, 3 MD: 33, 6, 3
AL: 2009/07/17 AL: 2010/01/25
DQ: Comments, usage guide DQ: Commands, variables in Polish
CS: 8411 BD: Moderate CS: 5951 BD: Moderate

7. Melosion AD: Music game, animation 15. Sudoku AD: Puzzle generation
MD: 64, 13, 3 MD: 102, 16, 5
AL: 2011/08/02, at least 4 committers AL: 2010/06/30
DQ: Dutch Web site, class diagram DQ: Readme, good naming
CS: 9229 BD: Extreme CS: 10636 BD: Minimal

8. Monopoli AD: Board game, nice animation 16. Puggle AD: Search Indexing
MD: 33, 5, 2 MD: 49, 8, 2
AL: 2009/07/17, 2 committers AL: 2011/04/07
DQ: Italian comments, every few lines DQ: HTML at Sourceforge
CS: 5353 BD: Minimal CS: 10848 BD: Moderate

AD = Application Domain, MD = Modularity, AL = Activity Level, DQ = Documentation Quality, CS = Code Size, BD = Buildability

24, 18]; selection by faculty from familiar projects [16, 8,
21, 22], or popular ones such as Apache and Mozilla [4], JU-
nit [3], software studio [22], or pertaining to specific domains
such as Web and Web 2.0 [34] or tools [5]; software written
in graduate and upper division courses [17, 11, 10, 20], and
soliciting projects from academia and industry [32]. Menee-
ley et al. [20] also faced disappointing results at Sourceforge
when searching subject to similar criteria. In response, they
decided to use a single project developed by their gradu-
ate students. We continuted our search to find comparable
projects, and hope that sharing our lessions would offer sys-
tematic guidance and tools for efficient project selection.

7. CONCLUSION AND FUTURE WORK
Open Source Software (OSS) can be used as example code

in SE education to emulate the challenges faced by soft-
ware engineers in comprehending and working with exist-
ing, legacy code. This paper reported on our experiences
and lessons in selecting OSS projects for teaching SE. To
enable project selection, despite the peculiarities of OSS
repositories, we developed criteria that would result in suit-
able projects for a sophomore/junior-level SE course. Our
search turned out to be far more time consuming and bur-
densome than anticipated, but it also led to interesting in-

sights into the capabilities of OSS repositories. The selected
projects were successful in demonstrating the comprehension
and evolution challenges. Thus, the burden of selecting and
preparing projects must be mitigated for OSS to be widely
adopted in SE and computing education.

We propose to explore several avenues to reduce this selec-
tion burden. These include investigating repositories such
as GitHub and social coding for good [28], slightly larger
projects and those beneficial to users [15], and examin-
ing whether different code and community metrics can as-
sess initial suitability before investing in preparing projects.
Contributing the selected projects for use by other instruc-
tors [20, 1] is also a concern of the future.

8. ACKNOWLEDGEMENTS
This material is based on work supported by the Na-

tional Science Foundation under grant DUE-1044061. Any
opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the authors and do not
necessarily reflect those of the National Science Foundation.

9. REFERENCES
[1] Computing Portal: Connecting Computing Educators.

http://www.computingportal.org/.

401

[2] C. Bird, D. Pattison, R. D’Souza, V. Filkov, and
P. Devanbu. Latent social structure in open source
projects. In Proc. of SIGSOFT Intl. Symp. on
Foundations of Software Engineering, pages 24–35,
2008.

[3] E. Brannock and N. Napier. “Real-World testing:
Using FOSS for software development courses”. In
Proc. of the Annual Conference on Information
Technology Education, pages 87–88, 2012.

[4] Y. Cai, J. Popyack, S. Mancoridis, and J. Salvage.
Contemporary canonical software courses. NSF
Proposal, 2009.

[5] D. Carrington and S. K. Kim. Teaching software
design with open source software. In Proc. of Annual
Frontiers in Education Conference, volume 3, pages
S1C–9–14 vol.3, November 2003.

[6] T. Clear. Comprehending large code bases-the skills
required for working in a brown fields environment.
ACM SIGCSE Bulletin, 37(2):12–14, 2005.

[7] Codeplex. Codeplex - open source project hosting.
http://www.codeplex.com/.

[8] D. Damian, C. Lassenius, M. Paasivaara, A. Borici,
and A. Schroter. “Teaching a globally distributed
project course using Scrum practices”. In Proc. of
Collaborative Teaching of Globally Distributed
Software Development Workshop, pages 30–34, 2012.

[9] A. Deshpande and D. Riehle. The total growth of
open source. IFIP International Federation for
Information Processing, pages 197–209, July 2008.

[10] J. D. N. Dionisio and K. D. Dahlquist. Improving the
computer science in bioinformatics through open
source pedagogy. SIGCSE Bull., 40:115–119, June
2008.

[11] J. D. N. Dionisio, C. L. Dickson, S. E. August, P. M.
Dorin, and R. Toal. An open source software culture
in the undergraduate computer science curriculum.
SIGCSE Bull., 39:70–74, June 2007.

[12] Freshmeat. Welcome to freshmeat.net.
http://freshmeat.net/.

[13] E. Gamma, R. Helm, R. E. Johnson, and J. Vlissides.
Design Patterns. Elements of Reusable
Object-Oriented Software. Addison-Wesley, March
1995.

[14] S. Gokhale, R. McCartney, and T. Smith. “Teaching
Software Engineering from a Maintenance-Centric
View”. The Journal of Computing Sciences in
Colleges, page 42, 2013.

[15] M. Goldweber, J. Barr, T. Clear, R. Davoli, S. Mann,
E. Patitsas, and S. Portnoff. A framework for
enhancing the social good in computing education: A
values approach. ACM Inroads, 4(1):58–79, 2013.

[16] D. Hepting, L. Peng, T. Maciag, D. Gerhard, and
B. Maguire. Creating synergy between usability
courses and open source software projects. ACM
SIGCSE Bulletin, 40(2):120–123, 2008.

[17] C. Liu. Adopting open-source software engineering in
computer science education. In Proc. of ICSE
Workshop on Open Source Software Engineering,,
pages 85–89, 2003.

[18] R. Marmorstein. “Open source contribution as an
effective software engineering class project”. In Proc.

of the Annual Joint Conference on Innovation and
Technology in Computer Science Education, pages
268–272, 2011.

[19] R. McCartney, S. Gokhale, and T. Smith. “Evaluating
an early software engineering course with projects and
tools from open source software”. In Proc. of the 9th
Intl. Conf. on Computing Education Research, pages
5–10. ACM, 2012.

[20] A. Meneely, L. Williams, and E. F. Gehringer. Rose: a
repository of education-friendly open-source projects.
SIGCSE Bull., 40(3):7–11, June 2008.

[21] J. Nandigam and V. Gudivada. “Source Code
Exploration as a Case Study Towards Application
Comprehension”. In Proc. of the 9th Intl. Conference
on Education and Information Systems, Technologies
and Applications, 2011.

[22] T. Nurkkala and S. Brandle. “Software Studio:
Teaching Professional Software Engineering”. In Proc.
of the Technical Symp. on Computer Science
Education, pages 153–158, 2011.

[23] S. Oreg and O. Nov. Exploring motivations for
contributing to open source initiatives: The roles of
contribution context and personal values. Computers
in Human Behavior, 24(5):2055–2073, September
2008.

[24] M. Pedroni, T. Bay, M. Oriol, and A. Pedroni. Open
source projects in programming courses. SIGCSE
Bull., 39(1):454–458, March 2007.

[25] E. Reynolds. “UConn Github”. https://github.com/,
2011.

[26] W. Scacchi. Understanding the requirements for
developing open source software systems. IEE
Proceedings Software, 149(1):24–39, 2002.

[27] S. E. Sim and R. C. Holt. The ramp-up problem in
software projects: A case study of how software
immigrants naturalize. In Proc. of the Intl. Conference
on Software Engineering, pages 361–370, 1998.

[28] socialcoding4good.org viewed 6/5/2013.

[29] Sourceforge. Sourceforge.net: Find and develop open
source software. http://sourceforge.net/.

[30] S. Sowe and I. Stamelos. Involving software
engineering students in open source projects:
Experiences from a pilot study. Journal of
Information Systems Education, 18(4), 2008.

[31] S. Sowe, I. Stamelos, and L. Angelis. Understanding
knowledge sharing activities in free/open source
projects: An empirical study. Journal of Systems and
Software, 81(3):431–446, 2007.

[32] E. Stroulia, K. Bauer, M. Craig, K. Reid, and
G. Wilson. “Teaching distributed software engineering
with UCOSP: The undergraduate capstone
open-source project”. In Proc. of the Community
Building Workshop on Collaborative Teaching of
Globally Distributed Software Development, pages
20–25, 2011.

[33] w3c. World Wide Web Consortium.
http://www.w3.org/.

[34] G. Xing. “Teaching software engineering using open
source software”. In Proc. of the 48th Annual
Southeast Regional Conference, page 57, 2010.

402

